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1. MAIN RESULTS
Much of the work on using Markov Decision Processes (MDPs)

in artificial intelligence (AI) focuses on solving a single problem.
However, AI agents often exist over a long period of time, during
which they may be required to solve several related tasks. This type
of scenario has motivated a significant amount of recent research in
knowledge transfer methods for MDPs. The idea is to allow an
agent to continue to re-use the expertise accumulated while solving
past tasks over its lifetime (see Taylor & Stone, 2009, for a com-
prehensive survey ).

We focus on transferring knowledge in MDPs that are fully spec-
ified by their state set S, action set A, reward function R : S×A→R

and state transition probabilities P : S×A→Dist(S) (where Dist(S)
is the set of distributions over the set S). A policy π is a function
from states to actions, π : S→ A. The value of a state s ∈ S un-
der policy π is defined as V π(s) = Eπ{∑∞

t=0 γt rt+1|s0 = s}, where
rt is the reward received at time step t, and γ ∈ (0,1) is a dis-
count factor. Solving an MDP means finding the optimal value
function V ∗(s) = maxπ V π(s), and the associated policy π∗. The
action-value function, Q∗ : S×A→R gives the expected return for
each state-action pair, if they are followed by the optimal policy
thereafter.

Let M1 = 〈S1,A1,P1,R1〉 and M2 = 〈S2,A2,P2,R1〉 be two MDPs
and let V ∗1 (Q∗1) and V ∗2 (Q∗2) denote their respective optimal value
functions. Our goal is to provide methods for transferring a policy
from ont MDP to the other, which ensuring strong theoretical guar-
antees regarding the expected return of the transferred policy in the
new MDP.

Our methods are based on bisimulation metrics, introduced by
Ferns, Panangaden & Precup (2004) . Bisimulation is a notion
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of behavioral equivalence between states, in which two states are
equivalent, loosely speaking, if they have the same immediate re-
wards, and the same probabilities of transitioning to equivalent
states. Bisimulation metrics turn the equivalence, which can be
brittle, into a more robust estimate. Ferns et al have shown that
two states from an MDP that are close in the metric also have close
optimal values. Bisimulation metrics can be computed by means
of an iterative algorithm and the accuracy of the computed metric
depends on the number of iterations.

In this abstract we propose methods for using bisimulation-style
metrics for policy transfer between MDPs. The methods differ in
terms of theoretical guarantees as well as empirical performance
and computational efficiency. A detailed presentation of the proofs,
as well as more experiments, is available in a technical report (Cas-
tro & Precup, 2010).

Bisimulation-metric algorithm: Suppose that A1 = A2 and let
d∼ : S1×S2→ R denote the bisimulation metric between the state
sets of the two MDPs. For any t ∈ S2, let the policy π∼ on M2 be
defined as: π∼(t) = π∗(argmins∈S1

d∼(s, t)).

THEOREM 1.1. For all t ∈ S2 let at = π∼(t). Then:

|Q∗2(t,at)−V ∗2 (t)| ≤ 2min
s∈S1

d∼(s, t),

and this bound is tight.

Lax-bisimulation algorithm: A shortcoming of the previous
approach is that it requires both MDPs to have the same action sets.
Lax bisimulation metrics (Taylor, Panangaden & Precup, 2009)
are very similar to bisimulation metrics but work with state-action
pairs instead. The lax bisimulation distance between states then
takes into account the best matching of actions. Let dL denote
the lax bismulation distance between states. For any t ∈ S2 let
st = argmins∈S1

dL(s, t) be the closest state to t. We define the
transferred policy as: πL(t) = minb∈A2

d((st ,π∗(st)),(t,b)).

THEOREM 1.2. For all t ∈ S2 let at = πL(t). Then |Q∗2(t,at)−
V ∗2 (t)| ≤ 2dL(st , t), and this bound is tight.

Pessimistic algorithm: We can speed up the computation of the
metric by only considering the optimal actions in the source system,
yielding a new state distance function d≈ and corresponding policy
π≈. The following result gives a lower bound on the value of the
transferred action:

THEOREM 1.3. For all s ∈ S1, t ∈ S2, let at = π≈(t). Then
Q∗2(t,at)≥V ∗1 (s)−d≈(s, t).

For any t ∈ S2 let st = argmaxs∈S1
{V ∗1 (s)− d≈(s, t)}. We define

the transferred policy as πPess(t) = minb∈A2
d≈((st ,π∗(st)),(t,b)).

Optimistic algorithm: The previous algorithms all suffer from
an inherent “pessimism” in bisimulation metrics, which are always
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driven by the action that maximizes the distance between two states.
In practice, this produces guarantees on performance for the worst
case, but may produce poor transfer for less pathological problems.
To get an optimistic algorithm, we can consider only the optimal
actions in the source system, and only their best matches in the
target system. This leads to the following heuristic dissimilarity
measure:

dOpt(s, t) = min
b∈A2

d≈((s,a∗s ),(t,b))

which can be used in the previous approach, instead of d≈.
Approximations: To speed up the computation of bisimulation

metrics, we suggest two approximations. First, one can iterate the
bisimulation metric computation algorithm only once, using the
immediate reward as a myopic distance estimate. In the second
approximation we split the reward region into a fixed number of in-
tervals and cluster states according to the reward interval to which
they belong, once again iterating the bisimulation metric compu-
tation only once. If the reward structure is relatively sparse, few
reward intervals are needed, and computation will be faster.

Temporal abstraction: All the metrics and algorithms discussed
above generalize easily to work with temporally extended actions,
in the options framework (Sutton, Precup & Singh, 1999) . Using
options produces better transfer results, as illustrated in previous
work, as well as in our experiments.

2. EXPERIMENTAL RESULTS
To illustrate the performance of the various policy transfer al-

gorithms, we used a gridworld navigation task consisting of four
rooms in a square (a room in each corner) connected by four hall-
ways (one between each pair of rooms). There are four primitive
actions, ∧, ∨, < and >, along with four analogous options, u, d, l
and r, available in every state. If an agent chooses option u, then
the option will take it to the hallway above its position, or to the
middle of the upper wall (if there is no hallway in that direction).
The option terminates as soon as the agent reaches the respective
hallway or position along the wall. All other options are similar.
There is a single goal placed in the right hallway, yielding a reward
of 1; all other rewards are 0. The source MDP M1 has only 8 states,
one for each room and one for each hallway. Only the primitive
actions are enabled. The target domain M2 has 44 states, and can
have either primitive actions only, or both primitives and options
(results in Figure 1). We also ran experiments where either MDP
has one room removed, whose results are presented in Figure 2.

In the graphs, we show results for standard Q-learning that starts
with an agent that uses the transferred policy initially, and over-
rides it only if the value of some other action (or option) is better.
In all results, the optimistic approach (pink line) yields the fastest
learning speed, with the bisimulation approximants (black and dot-
ted lines) coming in second. A similar result is obtained using the
max-norm distance between the value of the transferred policy and
the optimal value in the target system (results not shown here): the
optimistic approach outperformed the first three algorithms in this
measure, as well as in running time. The results obtained are con-
sistent across all problems.

From Figure 1, we also note that options help transfer and speed
up learning as well (not that the right panel has a larger range on
the y-axis than the left panel).

3. CONCLUSIONS AND FUTURE WORK
We presented four new bisimulation-based policy transfer algo-

rithms and two approximation ideas for performing policy trans-
fer on MDPs. The initial results shown here are very promising,
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Figure 1: Comparison of performance of transfer algorithms (4
rooms to 4 rooms). Left: Only primitive actions. Right: Both
primitive actions and options.
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Figure 2: Comparison of performance of transfer algorithms
(left: 4 rooms to 3 rooms, right: 3 rooms to 4 rooms)

but more work needs to be done to assess the empirical merit of
these methods. The most promising is the optimistic approach. Al-
though it lacks theoretical guarantees, it overcomes the pessimism
of bisimulation metrics, and provides much faster computation.
The extensions of all these algorithms to using temporally extended
actions are straightforward and provide much better empirical re-
sults than using just primitive actions.
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